The Exact Solution of an Octagonal Rectangle Triangle Random Tiling

نویسندگان

  • Jan de Gier
  • Bernard Nienhuis
چکیده

We present a detailed calculation of the recently published exact solution of a random tiling model possessing an eight-fold symmetric phase. The solution is obtained using Bethe Ansatz and provides closed expressions for the entropy and phason elastic constants. Qualitatively, this model has the same features as the square-triangle random tiling model. We use the method of P. Kalugin, who solved the Bethe Ansatz equations for the square-triangle tiling, which were found by M. Widom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ansatz solution of a decagonal rectangle triangle random tiling

A random tiling of rectangles and triangles displaying a decagonal phase is solved by Bethe Ansatz. Analogously to the solutions of the dodecagonal square triangle and the octagonal rectangle triangle tiling an exact expression for the maximum of the entropy is found.

متن کامل

Bethe Ansatz solution of a decagonal rectangle triangle random tiling

A random tiling of rectangles and triangles displaying a decagonal phase is solved by Bethe Ansatz. Analogously to the solutions of the dodecagonal square triangle and the octagonal rectangle triangle tiling an exact expression for the maximum of the entropy is found. PACS numbers: 05.20.-y, 05.50.+q, 04.20.Jb, 61.44.Br Short title: Solution of a decagonal random tiling February 1, 2008 † Elect...

متن کامل

Electronic properties of the octagonal tiling : a new renormalization-group calculation

we present a new renormalization-group calculation of the octagonal tiling excitation spectrum. Two new self-;imilar octagonal tilings are introduced, a triangle-Lite and a triangle-dan tiling, which are entangled with the standard rhombus-~quare tiling. The decimation procedure involved in the renormalization group calculation transforms each tiling enta a different one and goe; back tu the (r...

متن کامل

Application of random matrix theory to quasiperiodic systems

We study statistical properties of energy spectra of a tight-binding model on the twodimensional quasiperiodic Ammann-Beenker tiling. Taking into account the symmetries of finite approximants, we find that the underlying universal level-spacing distribution is given by the Gaussian orthogonal random matrix ensemble, and thus differs from the critical level-spacing distribution observed at the m...

متن کامل

Application of random matrix theory toquasiperiodic

We study statistical properties of energy spectra of a tight-binding model on the two-dimensional quasiperiodic Ammann-Beenker tiling. Taking into account the symmetries of nite approximants, we nd that the underlying universal level-spacing distribution is given by the Gaussian orthogonal random matrix ensemble, and thus diiers from the critical level-spacing distribution observed at the metal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996